Размеры видимой части Вселенной просто поражают воображение! Тем не менее, это всего лишь песчинка на берегу безбрежного Океана – Большой Вселенной, – истинную величину которой мы не в состоянии ни вообразить, ни посчитать...

http://i075.radikal.ru/1101/cd/3b6a9ba298fa.jpg

Галактика Млечный Путь входит в семью соседних галактик, известных как «Местная группа», и образует вместе с ними скопление галактик. Среди ближних галактик есть великолепные спирали. Одна из них, галактика Андромеды, является самым удалённым объектом, видимым невооружённым глазом. Большинство галактик во Вселенной имеет либо спиральную, либо эллиптическую форму, и многие из них входят в состав галактических скоплений.

На протяжении XIX в. и в начале XX в. астрономы не знали точно, что это за туманные светлые пятнышки видны им в телескоп. Было ясно, что звёзды входят в состав Млечного Пути так же, как и яркие газовые облака, вроде туманности Ориона. Но в поисках комет и планет астрономы, такие, как Шарль Мессье и Уильям Гершель, обнаруживали тысячи более слабых туманностей, многие из которых были спиральными. Астрономам хотелось знать, были ли это галактики, расположенные далеко за пределами Млечного Пути, или просто облака газа в пашей Галактике. Ответить на этот вопрос удалось лишь тогда, когда был найден способ измерения расстояний до этих слабых туманностей.

В 1924 г. американский астроном Эдвин Хаббл убедительно доказал, что спиральные туманности – это гигантские галактики, подобные Млечному Пути, но безгранично удалённые от него. Одним ударом он открыл ошеломляющую огромность Вселенной. Хаббл первым открыл в галактике Андромеды переменные звёзды – цефеиды. Они были гораздо слабее, чем цефеиды Магеллановых облаков. Разница в блеске означала, что галактика Андромеды должна быть в 10 раз дальше от нас, чем Магеллановы облака.

Галактику Андромеды можно наблюдать невооружённым глазом – это самый удалённый объект, который можно увидеть без бинокля или телескопа. Бесчисленные галактики намного слабее этой и, следовательно, ещё более далеки от нас. Эдвин Хаббл открыл царство галактик. В течение нескольких последующих лет он измерил расстояния до многих других спиралей и смог доказать, что даже ближайшие галактики отдалены от нас на много миллионов световых лет. Размеры наблюдаемой Вселенной намного превысили прежние догадки.

Местная группа

Вглядываясь в глубокий космос, мы обнаруживаем, что галактики не распределены по Вселенной равномерно. Галактики группируются вместе, образуя скопления, или семьи. Наша собственная семья называется «Местной группой». Это, в общем, довольно разреженное образование: около 25 его членов разбросаны на пространстве в 3 миллиона световых лет. Самые крупные их них – Млечный Путь, а также спиральные галактики М31 в Андромеде и МЗЗ в Треугольнике. Млечный Путь сопровождают около девяти карликовых галактик, движущихся поблизости, а Андромеду – ещё восемь. Астрономы продолжают находить в нашей «Местной группе» всё новые слабые галактики.

Каждый член «Местной группы» движется под действием гравитационного притяжения всех остальных членов. Все скопления галактик удерживаются вместе гравитационным полем, которое представляет собой важнейшую из сил, действующих во Вселенной на больших расстояниях. Измеряя скорости галактик в «Местной группе», астрономы могут вычислить её общую массу. Она примерно в 10 раз больше, чем масса видимых звёзд, – отсюда следует, что в Местной группе должно находиться очень много тёмного, невидимого вещества.

Скопление в Деве

Если мы продолжим путешествие за пределами «Местной группы», нам встретятся другие небольшие группы галактик – например, квинтет Стефана, в котором две спиральные галактики сцепились вместе. А дальше уже мерцают намного более крупные скопления. Громадное скопление Девы, расстояние до которого около 50 миллионов световых лет, – это ближайшее к нам большое скопление галактик. Оно слишком удалено, чтобы можно было вычислить расстояние с помощью переменных звёзд. Вместо этого для расчёта используют звёздные величины самых ярких звёзд и максимальных звёздных скоплений. Их блеск сравнивают с блеском подобных же объектов, расстояние до которых уже известно.

Скопление Девы огромно; оно раскинулось на участке, примерно в 200 раз превышающем площадь, занимаемую на небе полной Луной! В этом гигантском скоплении насчитывается несколько тысяч членов. В центральной его части находятся три эллиптические галактики, впервые занесённые в списки Шарлем Мессье: М84, М86 и М87. Это действительно громадные галактики. Самая крупная из них, М87, по размеру сравнима со всей пашей «Местной группой». Скопление Девы столь массивно, что его гравитационное действие не только удерживает вместе весь этот огромный коллектив, но и простирается вплоть до пашей «Местной группы». Наша Галактика и её компаньоны медленно движутся по направлению к скоплению Девы.

Скопление в созвездии Волосы Вероники

Двигаясь ещё дальше, на расстоянии примерно в 350 миллионов световых лет мы прибываем в огромный галактический город в созвездии Волосы Вероники. Это скопление Волос Вероники, содержащее более 1000 ярких эллиптических галактик и, возможно, много тысяч более мелких членов, которые уже невозможно увидеть современными способами. Размер скопления в поперечнике достигает 10 миллионов световых лет; две сверхгигантские эллиптические галактики находятся в самой его сердцевине. Астрономы предполагают, что в этом скоплении содержатся десятки тысяч членов.

Все галактики удерживаются в скоплении силами тяготения. В таком случае скорости галактик внутри скопления указывают, что лишь несколько процентов общей массы заключено в звёздах, которые нам видны. Скопление в Волосах Вероники, как и другие крупные скопления такого типа, в основном состоит из тёмного вещества.

В центральных областях густо населённых скоплений, подобных тому, что находится в Волосах Вероники, вряд ли имеются спиральные галактики. Возможно, это связано с тем, что спиральные галактики, которые когда-то там существовали, слились вместе, образовав эллиптические галактики. Скопление Волос Вероники является сильным источником рентгеновского излучения, испускаемого очень горячим газом с температурой от 10 до 100 миллионов градусов. Этот газ обнаружен в центральной части скопления; по своему химическому составу он близок к материалу звёзд.

Возможно, что произошло следующее. Галактики, находящиеся в центральной части скопления, сталкивались друг с другом и, разлетаясь после удара, сбрасывали свои газовые облака. Газ разогревался трением, когда галактики проносились сквозь него со скоростями до тысяч километров в секунду. Поскольку галактики теряли свой газ, их спиральные рукава постепенно исчезли.

Сверхскопления и пустоты

Фотографирование глубокого космоса показывает, что по мере нашего продвижения во Вселенную, галактики всё появляются и появляются. Почти в любом направлении, куда бы мы ни посмотрели, обнаруживается россыпь слабых галактик, подобная пыли. Некоторые объекты обнаружены на расстоянии до 10 миллиардов световых лет. Каждая из этих бесчисленных галактик содержит миллиарды звёзд. Такие числа с трудом представляют себе даже профессиональные астрономы. Внегалактическая Вселенная больше всего, что можно вообразить.

Почти все галактики находятся в скоплениях, содержащих от нескольких штук до многих тысяч членов. Но что можно сказать о самих этих скоплениях: может быть, они тоже группируются в семьи? Да, это именно так!

Местное скопление скоплений, известное, как «Местное сверхскопление», представляет собой уплощённое образование, в которое входят, в частности, Местная группа и скопление Девы. Центр масс расположен в скоплении Девы, а мы находимся на окраине. Астрономы приложили усилия, чтобы составить трёхмерную карту «Местного сверхскопления» и выявить его структуру. Оказалось, что оно содержит около 400 отдельных скоплений галактик; эти скопления собраны в слои и полосы, разделённые промежутками.

Другое сверхскопление находится в созвездии Геркулеса. До него около 700 миллионов световых лет, причём на протяжении примерно 300 миллионов световых лет по дороге к нему галактики, видимо, не встречаются вовсе.

Таким образом, астрономы установили, что сверхскопления отделены друг от друга гигантскими пустыми пространствами. Внутри сверхскоплений тоже есть как бы «пузыри» размерами в миллионы световых лет, не содержащие галактик. Сверхскопления складываются в нити и ленты, придавая Вселенной в самом грандиозном масштабе губчатую структуру.

Закон Хаббла и красное смещение

Сейчас нам известно, что наша Вселенная всё время расширяется, становясь всё больше и больше. Решающую роль в открытии сыграл Хаббл. Используя звёзды-цефеиды, он определил расстояния до ближайших галактик, а по измерениям красного смещения установил их скорости. Открытие было сделано, когда он построил график, на котором скорости галактик были отложены, в зависимости от расстояний до них. Оказалось, что взаимосвязь этих двух величин выражается на графике прямой линией: чем дальше от нас галактика, тем больше её скорость. Закон Хаббла утверждает, что чем быстрее движется галактика, тем более она удалена. Хаббл нашёл связь между двумя величинами, которые можно было измерить для ближайших галактик: между расстоянием и красным смещением (которое и даёт скорость). А после того, как такая связь установлена, закон Хаббла может быть обращён и использован для обратной процедуры. Измеряя красное смещение для более далёких галактик, можно, используя закон Хаббла, вычислить и расстояние до них. Именно так астрономы узнают расстояния до далёких галактик нашей Вселенной.

Конечно, при использовании закона Хаббла, существует некоторая неуверенность в правильности результата. Например, если при вычислении расстояний до ближайших галактик допущена неточность, график уже не будет абсолютно правильным: любая ошибка в нём продолжится в дальний космос, когда мы попытаемся узнать с его помощью расстояния до более удалённых галактик. Тем не менее, закон Хаббла является важнейшим методом исследования крупномасштабной структуры Вселенной.

Расширение Вселенной

Почему из закона Хаббла следует, что Вселенная расширяется? Все галактики разбегаются от нас. Значит, Млечный Путь находится в центре Вселенной? Ведь, когда мы видим взрыв – например, фейерверк, взорвавшийся в небе, – то всё разлетается во все стороны от места взрыва. Значит, если всё вокруг разлетается от нас, мы должны находиться в центре этого расширения?

Нет, это не так: мы не находимся в центре.

Когда во время взрыва отдельные части разлетаются в разные стороны, возрастают расстояния между всеми осколками. Это означает, что каждый обломок «видит», как все остальные улетают от него прочь. Чтобы понять, как это получается, возьми воздушный шарик и нарисуй на нём несколько галактик, используя спиральные и эллиптические значки. Теперь медленно надувай шарик. По мере его расширения галактики удаляются друг от друга. Какую бы галактику ты ни выбрал в качестве начала отсчета, все остальные, по мере надувания шарика, распыляются всё дальше и дальше.

Это можно обсудить и с точки зрения математики. Оболочка шарика это изогнутая поверхность, у неё почти нет толщины. Когда ты надуваешь шарик, эта сферическая поверхность, растягиваясь, охватывает всё большую часть пространства. Искривлённая оболочка, будучи сама двухмерной, расширяется в трёхмерном пространстве. И по мере того, как это происходит, то галактики, нарисованные на шарике, всё больше удаляются друг от друга.

Что же касается Вселенной, то три измерения обычного пространства расширяются в некоем особом четырёхмерном пространстве, которое называется пространство-время. Дополнительное измерение – это время. С течением времени три измерения космоса непрерывно увеличивают свою протяжённость. Скопления галактик, неразрывно скреплённые с расширяющимся пространством, всё время удаляются друг от друга.

Возраст Вселенной

Как астрономы могут определить возраст Вселенной? Возраст дерева мы узнаём, подсчитывая годовые кольца на срезе, – в год нарастает по одному кольцу. Геологи могут оцепить возраст горных пород, осевших в отложениях, по найденным в них окаменелостям. Возраст Луны удалось узнать с помощью измерений радиоактивности пород, содержащих радиоактивные элементы. Во всех этих методах, так или иначе, добывают нужные данные – число колец, пилы окаменелостей, интенсивность оставшихся излучений – и с их помощью вычисляют возраст.

Чтобы определить возраст расширяющейся Вселенной, мы изучаем удалённость и скорости большого количества галактик. Оказывается, что с удалением на каждый миллион световых лет скорость галактик возрастает примерно на 20 км/с (астрономы знают это число не вполне точно, с допуском в 2-3 км/с). Зная, как изменяется скорость с расстоянием, мы можем подсчитать, что 17 миллиардов лет назад вся материя находилась в одном и том же месте. Это и есть один из способов определения возраста Вселенной. Так как её возраст – это время, прошедшее после Большого взрыва, когда началось расширение…

Источник

Подробнее о настоящем строении Вселенной см. в книгах академика Н.В. Левашова «Последнее обращение к Человечеству» и «Неоднородная Вселенная» и других.

В удалённом скоплении галактик «живут» 800 триллионов Солнц

Иван Терехов, 17.10.2010

Бесконечный космос «подбрасывает» учёным всё новые, впечатляющие подробности существования на раннем этапе своего развития. На этот раз астрономы из Гарвард-Смитсоновского центра астрофизики, работающие с телескопом SPT (South Pole Telecope), обнаружили одно из самых массивных галактических скоплений, удалённое от нас на 7 миллиардов световых лет. Информация об общей массе скопления может вызывать приступы головокружения и тошноты при попытке оценить масштабы действа: по данным измерений звёздный кластер имеет массу, равную массе 800 триллионов Солнц.

Скопление, получившее название SPT-CL J0546-5345, расположено в созвездии Живописца. Его красное смещение z составляет 1,07, то есть сейчас астрономы наблюдают кластер в том состоянии, в котором он находился семь миллиардов лет назад. Причём, уже тогда эта структура была почти такой же крупной, как скопление Волос Вероники, являющееся одним из самых плотных скоплений, известных науке. Исследователи считают, что за прошедшее время SPT-CL J0546-5345 могло увеличиться в четыре раза.

«Это скопление галактик выигрывает титул тяжеловеса. Это одно из самых массивных скоплений, когда-либо найденных на таком расстоянии», – сказал сотрудник центра Марк Бродуин (Mark Brodwin), один из авторов статьи, опубликованной в «Astrophysical Journal». Как отметил Бродуин, в SPT-CL J0546-5345 много достаточно старых галактик. Это означает, что скопление возникло в «детстве» Вселенной, в первые два миллиарда лет её существования. Возраст Вселенной, по данным зонда WMAP (Wilkinson Microwave Anisotropy Probe), оценивается в 13,73 миллиарда лет. Такие скопления могут быть полезны в изучении влияния тёмной материи и тёмной энергии на формирование различных структур в космосе.

Группа обнаружила скопление, работая с первыми данными телескопа SPT, установленного на станции Амундсена-Скотта в Антарктиде. 10-метровый телескоп, работающий в частотном диапазоне 70-300 ГГц, начал работу в 2007 году. Поиск скоплений галактик – его основная задача, с помощью данных SPT учёные надеются приблизиться к получению уравнения состояния для тёмной энергии, на которую, по представлениям астрономов, приходится около 74% массы Вселенной. Найденное скопление астрономы изучили с помощью инструментов космического телескопа Спитцер (Spitzer Space Telescope), а также группы телескопов чилийской обсерватории Лас-Кампанас. Это позволило выделить отдельные галактики в скоплении и оценить скорость их движения.

SPT-CL J0546-5345 удалось обнаружить, благодаря так называемому эффекту Сюняева-Зельдовича – незначительным искажениям в реликтовом излучении, «эхе» Большого взрыва, которые возникают, когда излучение проходит через крупное скопление. Этот метод поиска одинаково хорошо выявляет и близкие, и удалённые скопления, а также позволяет достаточно точно оценить их массу.